
Advanced GUI Design: Module 7! Custom GUI Design with VSTGUI4!
Copyright © 2016 Will Pirkle

!
Custom GUI Design using VSTGUI4!
Will Pirkle!!
In this final module, we will create a VSTGUI4 GUI programmatically and without the RackAFX GUI De-
signer. First, have a look at a few commercially available products that implement Custom VSTGUI4 GUIs
— this gives you an idea of the professionalism you can achieve with what I am calling a “pure custom”
GUI. As with the rest of the RackAFX GUI Designer, the quality of your GUI is dictated mainly from the
quality of your graphics files. !!
StealthDelay by PolygonSheep (created with this GUI Tutorial and RackAFX v6.8): !
http://www.polygonsheep.com/!

! !

http://www.polygonsheep.com/

Advanced GUI Design: Module 7! Custom GUI Design with VSTGUI4!
Copyright © 2016 Will Pirkle

!
DSP Trigger from Audio Front: !
http://www.audiofront.net/dspTrigger.php!

!
phosphor from audiodamage: !
http://www.audiodamage.com/instruments/product.php?pid=AD027!

!!
! !

http://www.audiofront.net/dspTrigger.php
http://www.audiodamage.com/instruments/product.php?pid=AD027

Advanced GUI Design: Module 7! Custom GUI Design with VSTGUI4!
Copyright © 2016 Will Pirkle

!
Rhino from Big Tick Audio Software:!
http://www.bigtickaudio.com/rhino/home!

!
All of these GUIs use ordinary, subclassed, and custom view objects. This is not for the feint of heart - to
achieve results like these will take you some time and you will need to dig deep into the VSTGUI4 docu-
mentation and samples you can find at the VSTGUI website as well as the mailing list. If you are serious,
I would urge you to join the VSTGUI mailing list, but remember that this list is full of professionals who are
using VSTGUI in their projects - please only ask questions if you have exhausted all other possibilities as
the members are quite busy. !!
Spoiler Alert! !
The GUI we are going to design will be ultra-simple, just to get you started with VSTGUI4. It will not look
like the beautiful GUIs here. In order to achieve results like the ones above you are going to need to really
spend some time with the library and with PhotoShop and/or KnobMan. You may want to hire a Graphic
Designer to render the fundamental graphic components for you as truly professional looking GUIs usual-
ly require professionals in their design.!!!

! !

http://www.bigtickaudio.com/rhino/home

Advanced GUI Design: Module 7! Custom GUI Design with VSTGUI4!
Copyright © 2016 Will Pirkle

Graphics for your Custom GUI!
You will certainly need graphics files to create nice looking GUIs. The graphics files are called “bitmaps” in
VSTGUI parlance, however they must be .PNG files for use in your GUIs. Fortunately, converting
graphic formats is commonplace today. !!
Graphics from the RackAFX GUI Designer: you automatically have access to all of the graphics files
used in the RackAFX GUI Designer. You can find the names of these files easily by inspecting the .uidesc
file and navigating to the <bitmaps> chunk. !!
Graphics from your plugin: you can also add your own graphics to your plugin’s resource stream. This
is documented on my You Tube video here:!!
https://www.youtube.com/watch?v=cp3draeYLPU!!
The process involves 3 steps - if the graphics file is named “knobgraphic.png” then you would do the fol-
lowing:!!
1. copy the .png file into the <project>/resources folder !
2. in the Visual Studio Solution Explorer, find the <project>.rc file and right click on it; choose “View

Code” and add a line to your .rc file like this (notice that the all CAPS name is identical to the lower
case version):!!

///!
//!
// PNG!
//!
KNOBGRAPHIC.PNG PNG! "resources\\knobgraphic.png"!!
3. recompile the RackAFX project - your graphics will now be available in both the RackAFX GUI De-

signer and also your plugin natively!!!
Anatomy of a VSTGUI GUI!
VSTGUI uses some conventions regarding the setup and use of the GUI. These details are hidden from
you if you use the RackAFX GUI Designer and Make VST or Make AU or Make AAX. However, if you are
going to code your own GUI you will need to know and understand them. Here is the GUI from the ac-
companying project called CustomViewsFive:!

! !

600 pixels

300 pixels

greymetal.png

lightgreymetal.png

frameinner view
container

Advanced GUI Design: Module 7! Custom GUI Design with VSTGUI4!
Copyright © 2016 Will Pirkle

!
View Containers:!
There are two view containers that are shown with dotted lines around them. The outer most container
has dimensions 300 x 600 pixels and has a special name: it is the frame and there is a special variable
dedicated specifically for it. The frame view container is just like any other view container in that it holds
other sub-views. We call it the parent of all the other views. The frame has no parent as it is the top level
container. When we update the frame (invalidate it and make it redraw itself) it will redraw all of its sub-
views. If any of the sub-views are view containers, they in turn will update their sub-views and so on. The
frame here has a background graphic that is in the greymetal.png file. In this document, the word frame in
italics means “the frame object” rather than frame that surrounds the text-edit and option menu controls.!!
There is an inner container that has the boost label, button, option menu and LED meter inside it. It has a
background graphic from the lightgreymetal.png file. These PNG files are included in your plug-in auto-
matically, but of course you can add your own graphics (see my website or YouTube videos for instruc-
tions).!!
Other Controls:!
The other controls consist of a Left Volume label, knob and edit control, to the left of the inner view con-
tainer which has its own controls embedded inside of it. !!
VSTGUI Control Tags vs. RackAFX ControlIDs!
In RackAFX, your controls are identified by a unique identifier called the ControlD. When you set up con-
trols on the main UI with the slider and button designer, those ControlID values are hardcoded for you
and can not be changed. Calls to userInterfaceChange() and checkUpdateGUI() in RackAFX also use
these ControlID values. In VST2, the GUI controls were also referenced with an ID value, but these had
to be zero-indexed and in sequential order. VSTGUI4 uses the controlTag as the identifier. Historically,
this was a zero-indexed value that matched the value in the VST2 plugin. !!
The UI control objects in your RackAFX plugin are stored in a linked list that may be accessed using the
list’s index value (zero-indexed as in the VST2 plugins) or with the RackAFX ControlID value - see the
plugin.h file for those access functions. During the ordinary course of operations, you only need to use the
ControlID value to access your UI objects. !!
However, when designing the base class object for this project, in order to keep the ID values consistent
across AU, VST and AAX, we need to reference the controls with their zero-indexed controlTag value. The
included base class object contains functions to help you convert your RackAFX ControlID values to and
from the zero-indexed controlTag values. For example:!!
int nTag = getTagForRAFXControlId(8); !
gets the tag version of the GUI control with RackAFX ControlID = 8. As you work through this tutorial, just
remember to keep that relationship in mind. !!
Laying out the GUI graphically:!
When you design the GUI programmatically you need to do some work up-front deciding on the exact
locations of the controls. When you create them, you will supply the CRect object that dictates their
placement (top, left) and size (width, height). Without the drag-and-drop environment, this usually means
getting a piece of graph paper and drawing the GUI with the origin and size values for each control. Let’s
look at the placement of the volume controls on the left, then we can examine the inner view container.!

! !

Advanced GUI Design: Module 7! Custom GUI Design with VSTGUI4!
Copyright © 2016 Will Pirkle

!

Notice that the coordinates of the origin values are relative to the frame, whose upper left corner is (0, 0).
This is the golden rule of VSTGUI object placement — the origin of the object is always relative to the
origin of the parent container. Also notice that the x-coordinate increases as you move from the left to
right and the y-coordinate increases as you move down from the top - a common UI paradigm. So, we
can now list our first three GUI objects that will need to be created and their origin/size values:!!!

!!!

Object origin size graphic

frame (CViewContainer) (0, 0) (300, 600) greymetal.png

CTextLabel (0, 5) (75, 15) n/a

CAnimKnob (16, 22) (42, 42) sslblue.png

CTextEdit (15, 67) (45, 15) n/a

! !

Volume (L)

123.45

origin = (0, 5) size = (75, 15)

origin = (16, 22)

size = (42, 42)

origin = (15, 67)
size = (45, 15)

Advanced GUI Design: Module 7! Custom GUI Design with VSTGUI4!
Copyright © 2016 Will Pirkle

Now let’s look at the inner view container and its sub-views:!
The inner view container’s origin is relative to the frame’s origin, however, the inner view container’s sub-
views are positioned relative to it’s origin — for example the Boost label is (0, 5) where x = 0 is the left
side of the inner view container. Now we can list the rest of the controls. !

!!

!!!!!
Making these tables is important — it will make the coding much faster to have these values at hand.
When we create the controls, we are going to go in this order:!!
• create the frame object!

• create the CTextLabel object and add to the frame as a sub-view!
• create the CAnimKnob object and add to the frame as a sub-view!
• create the CTextEdit object and add to the frame as a sub-view!
• create the CViewContainer object and add to the frame as a sub-view!

• create the CTextLabel (Boost) and add it to the inner view container as a sub-view!

Object origin size graphic

CViewContainer (80, 0) (100, 120) lightgreymetal.png

CTextLabel (0, 5) (75, 15) n/a

COnOffButton (25, 30) (25, 35) n/a

CVuMeter (70, 10) (17, 86) n/a

COptionMenu (12, 98) (75, 15) n/a

! !

origin = (80, 0)

size = (100, 120)

Boostorigin = (0, 5)

size = (75, 15)

origin = (25, 30)

size = (25, 35)

origin = (70, 10)

size = (17, 86)

STEREOorigin = (12, 98) size = (75, 15)

Advanced GUI Design: Module 7! Custom GUI Design with VSTGUI4!
Copyright © 2016 Will Pirkle

• create the COnOffButton and add it to the inner view container as a sub-view!
• create the CVuMeter and add it to the inner view container as a sub-view!
• create the COptionMenu and add it to the inner view container as a sub-view!!

The nesting of the bullets above mimics the way the code will flow. !!
The GUI Editor Object!
A special C++ object maintains the GUI — it is responsible for creating, destroying and updating the GUI
controls. It is also responsible for implementing a timer that will regularly ping the GUI to update it. This
not only makes the controls appear to move when you move them, it also aids in animations/movies and
preset initializations. In VSTGUI, this object is called the “Editor” but I am going to refer to it as the GUI
Controller. I am only changing the designation because the term “editor” often implies text editing. The
GUI Controller object translates VSTGUI values and applies them to the plug-in variables. It also ani-
mates the meter object. !!
You may remember this figure from module 3:!

!
In this case, the GUI Controller object is part of the RackAFX host. For your custom GUI, the location of
the object changes — your plugin now owns the GUI Controller object:!
!!!!!!!!!!!!!!!!!!!!
! !

Your GUI
RackAFX Host

[0, 1]

[0, 1]

[-60, 0] [-60, 0]

RackAFX Plugin

GUI Controller

Plugin Variables

Your GUI
RackAFX Host

GUI Controller RackAFX Plugin
[0, 1]

[0, 1]

[-60, 0]

[-60, 0]

Advanced GUI Design: Module 7! Custom GUI Design with VSTGUI4!
Copyright © 2016 Will Pirkle

Thread-safe GUI Communication!
Starting in RackAFX v6.8, all GUI communications in native RackAFX as well as all the ported projects
(Make VST, Make AU, Make AAX) are handled in a thread-safe manner. This is documented on my web-
site at http://www.willpirkle.com/forum/ and is too detailed to cover here. The main thing to under-
stand is that each of the APIs has its own way of ensuring that control changes are applied to the plugin
prior to audio processing. In this way, controls will not change during the audio buffer processing loop and
the accesses to shared data via multiple threads is done in a manner that is thread-safe. !!
In all APIs, an intermediate container of parameter values, objects or structures is also applied. These
are:!!
RackAFX: ! GUI_PARAMETER structures!
VST3: ! ! Parameter objects!
AU: ! ! GlobalParameter objects!
AAX: ! ! AAX_IParameter objects!!
VST3, AU and AAX also require these additional objects for implementing host-drawn GUI’s (also known
as “Default GUIs”), preset loading/storing, and GUI communications. We need to ensure that GUI
changes on the Custom GUI are also properly applied to any API-specific underlying parameter objects.
In VST3 this is called “parameter binding” and is a good name for this paradigm. !!
The Good News!!
The good news is that I’ve already written all the code that will synchronize your Custom GUI parameter
values to the appropriate API-specific objects and structures. You do not need to worry about that part or
modify any of the underlying code. These details are documented in the code and you can also find more
information from my website. !!
CVSTGUIController!
I’ve created this abstract base class for you to subclass with your own Custom GUI object. You will need
to implement only a few functions to get your GUI working properly. Other functions are written for you but
you will not want or need to modify that code. In this document, we will focus on the functions that you do
need to implement. !!
CVSTGUIController is derived from the following VSTGUI4 objects:!!
VSTGUIEditorInterface!
This object is the owner of the frame object. It only has a few variables and methods. The most important
are shown in bold. !!
• getKnobMode() — this returns a constant that tells how the knob is handled when you move the

mouse. The default is the linear mode where linear movement over the knob causes it to rotate. The full
set of choices is: !

! kLinearMode;!
! kRelativCircularMode;!
! kCircularMode; !
• getFrame() — this returns a pointer to the frame object!!
CFrame frame; — CFrame is just a special kind of CViewContainer that is designed to be the outermost
container.!!!!!
! !

http://www.willpirkle.com/forum/

Advanced GUI Design: Module 7! Custom GUI Design with VSTGUI4!
Copyright © 2016 Will Pirkle

class VSTGUIEditorInterface
{
public:
 virtual void doIdleStuff () {}
 virtual int32_t getKnobMode () const { return 0; }

 virtual void beginEdit (int32_t index) {}
 virtual void endEdit (int32_t index) {} !
 ///< frame will change size, if this returns false the upstream imple
 /// mentation does not allow it and thus the size of the frame will
 /// not change
 virtual bool beforeSizeChange (const CRect& newSize,
 const CRect& oldSize) { return true; } !!
 virtual CFrame* getFrame () const { return frame; }
protected:
 VSTGUIEditorInterface () : frame (0) {}
 virtual ~VSTGUIEditorInterface () {} !
 CFrame* frame;
}; !!
IControlListener!
The GUI objects will deliver control change information to their IControlListener buddies. In the previous
modules, the listener was the RackAFX GUI (or VST3/AU/AAX wrapper objects). Now, your object must
handle these chores. IControlListener is pure abstract, and we need to override the single pure abstract
method valueChanged() shown in bold, which is the message handler that is called when a control
changes due to user interaction.!!!
class IControlListener
{
public:
 virtual ~IControlListener() {}
 virtual void valueChanged (VSTGUI::CControl* pControl) = 0;
 virtual int32_t controlModifierClicked (VSTGUI::CControl* pControl,
 VSTGUI::CButtonState button)
 { return 0; }

 virtual void controlBeginEdit (VSTGUI::CControl* pControl) {}
 virtual void controlEndEdit (VSTGUI::CControl* pControl) {}
 virtual void controlTagWillChange (VSTGUI::CControl* pControl) {}
 virtual void controlTagDidChange (VSTGUI::CControl* pControl) {}
#if DEBUG
 virtual char controlModifierClicked (VSTGUI::CControl* pControl, long
button) { return 0; }
#endif
}; !!
The valueChanged() method might be the most important function we need to write. It needs to do sever-
al things each time a new control change message is received:!!
• decode the control-tag to figure out when control changed!
• find the CUICtrl object that is connected to this control-tag!

! !

Advanced GUI Design: Module 7! Custom GUI Design with VSTGUI4!
Copyright © 2016 Will Pirkle

• translate the normalized value from the control to the required value for the plug-in!
• call the built-in function setPlugInParameterNormalized() which will handle the API-specific thread-safe

handling of transferring this value into the plugin !
• broadcast this control change to all GUI objects that have the same control-tag by calling setGUICon-

trolsWithNormalizedParameter() which is one of the few functions you must write!!
The last item is crucial — it is the glue that binds the GUI controls together that share a common control-
tag. This is why the text edit control updates when you move the associated knob and it is up to you to
make that connection happen in code. !!!
CBaseObject!
This is the base object for all VSTGUI4 views, controls and control listeners. It takes care of reference
counting and you don’t have to worry about any of it.!!!
CVSTGUIController!
CVSTGUIController is the object that I have created for you to use as your GUI Controller’s abstract base
class. When you open an old project or create a new project, the CVSTGUIController.h and CVST-
GUIController.cpp files will be added to your project folder, but NOT to your Visual Studio project — you
must manually add these files the same way you added the other advanced GUI API files. I had several
things in mind when creating this object for you: !!
• it needs to be platform-independent and able to easily integrate with Audio Unit, VST3 and AAX plugins,

which have a bit more complex connections (you don’t have to worry about any of it, but the AU-specific
code is there if you want to see it)!

• it features three important functions that are critical to the object lifecycle:!
• open() — called to create the frame and populate it with controls!
• close() — called before the frame is destroyed for cleanup!
• idle() — update the frame in response to the GUI timer ping!

• it needs to implement the overrides from the two main base class objects:!
• getKnobMode() from VSTGUIEditorInterface!
• valueChanged() from IControlListener!!

In addition, I have also included a bunch of useful functions that handle much of the low-level chores of
translating normalized to plain values, working with bitmaps, and handling non-linear controls (volt/octave
and log-based). !!
There are several important member variables too:!!
protected:
 void* m_hPlugInInstance;// HINSTANCE of this DLL (WinOS only) !
 // --- our plugin
 CPlugIn* m_pPlugIn; !
 // --- timer for GUI updates
 CVSTGUITimer* timer; !
void* m_hPlugInInstance!
The first variable is the instance handle for the DLL (Windows) OR a pointer to the Audio Unit instance
(AU only). This is passed into the open() function and is required to create the frame object in Windows.
The instance handle is delivered to the plugin when it is loaded. You don’t have to worry about its details
but you do have to store it.!

! !

Advanced GUI Design: Module 7! Custom GUI Design with VSTGUI4!
Copyright © 2016 Will Pirkle

!
CPlugIn* m_pPlugIn!
This is a pointer to the plug-in and is the mechanism that we use to connect the GUI to the plug-in. This is
one of several different ways of making the connection. We pass our this pointer to the GUI Controller
when we create the GUI. The GUI Controller then uses it to get and set variables on our object as well as
call our userInterfaceChange() method. Some may criticize this method of binding the objects together,
but it is the simplest and most straightforward and parameter changes are handled in a thread-safe man-
ner. After you have the GUI Controller object working with the plug-in, you might think of other ways to
make the connection happen. !!
CVSTGUITimer* timer!
We need a platform-independent timer object to update the GUI on an interval that I have chosen to be 50
milliseconds, though you may change that. The normal VSTGUI update interval is 300 milliseconds, but
many feel that this is too slow and causes the GUI and its animations to be slightly glitchy. You can exper-
iment with the interval — long intervals will use less processing time, but look less-smooth. Here is the
declaration of the CVSTGUIController showing only the functions you need to modify to make your Cus-
tom GUI work properly. It does not show the helper functions (for doing things like creating PNG images)
or the API Specific functions. !!
#include "../vstgui4/vstgui/vstgui.h"
#include "plugin.h"
#include <cstdio>
#include <string>
#include <vector>
#include <map> !
#ifdef AUPLUGIN
 #include <AudioToolbox/AudioToolbox.h>
#endif !
using namespace std; !
namespace VSTGUI { !
// --- the main VSTGUI object, platform independent
class CVSTGUIController : public VSTGUIEditorInterface,
 public IControlListener,
 public CBaseObject
{
public:
 CVSTGUIController();
 virtual ~CVSTGUIController(); !
 // --- MAIN OVERRIDES:
 //
 // --- open()
 virtual bool open(CPlugIn* pPlugIn, VSTGUI_VIEW_INFO* info); !
 // --- close function
 virtual void close(); !
 // --- do idle processing; optional override for meters
 virtual void idle(); !
 // --- VSTGUIEditorInterface override; you must override this if you
 // want to alter the knob mode

! !

Advanced GUI Design: Module 7! Custom GUI Design with VSTGUI4!
Copyright © 2016 Will Pirkle

 virtual int32_t getKnobMode() const; !
 // --- IControlListener override (pure abstract, so you **must** over
 // ride this
 virtual void valueChanged(VSTGUI::CControl* pControl) = 0; !
 // --- you must override this functions to set your control locations
 // based on the normalized values
 virtual void setGUIControlsWithNormalizedParameter(int tag,
 double value,
 VSTGUI::CControl* pControl = NULL) = 0; !
protected:
 void* m_hPlugInInstance; // HINSTANCE of this DLL !
 // --- our plugin
 CPlugIn* m_pPlugIn;

 // --- timer for GUI updates
 CVSTGUITimer* timer; !!
CCustomVSTGUI!
In the accompanying project, I’ve subclassed CVSTGUIController as CCustomVSTGUI:!!
class CCustomVSTGUI : public CVSTGUIController !
It includes only nine functions, and you do not need to modify two of them, so there are really only seven
functions to deal with; a few of them are very simple.!!!
Plugin-Side Code!
Before we get to the details of implementing the GUI Controller object, let’s look at the plug-in side portion
of the code since it is easier to understand. In the plugin’s .h file, we declare a pointer to our CVST-
GUIController object:!!
// un-comment for advanced GUI API: see www.willpirkle.com for details and
// sample code
#include "GUIViewAttributes.h"
#include "../vstgui4/vstgui/vstgui.h" !
// our custom GUI object
#include "CustomVSTGUI.h" !
class CCustomViewsFive : public CPlugIn
{
public:
 // RackAFX Plug-In API Member Methods: !
 <SNIP SNIP SNIP> !
 // Custom GUI
 virtual void* __stdcall showGUI(void* pInfo); !
 // Add your code here: -- //
 CCustomVSTGUI* m_pGUIController; // full custom VSTGUI4 GUI !
! !

Advanced GUI Design: Module 7! Custom GUI Design with VSTGUI4!
Copyright © 2016 Will Pirkle

 // END OF USER CODE --- // !
! etc… !
In the plugin’s .cpp file, examine the following:!!
Constructor:!
• NULL the pointer!!
CCustomViewsFive::CCustomViewsFive()
{
 // Added by RackAFX - DO NOT REMOVE
 //
 // initUI() for GUI controls: this must be called before initializing/
 // using any GUI variables
 initUI();
 // END initUI() !
 <SNIP SNIP SNIP> !
 // Finish initializations here
 m_pGUIController = NULL; !
} !
showGUI():!
• respond to the GUI_HAS_USER_CUSTOM message by setting the info->bHasUserCustomView flag to

true!
• respond to the GUI_USER_CUSTOM_OPEN message by instantiating the CVSTGUIController mem-

ber object and calling its open() method (we will discuss the open() arguments shortly)!
• respond to the GUI_USER_CUSTOM_CLOSE message by closing the GUI and deleting the GUI Con-

troller!
• respond to GUI_RAFX_SYNC message by calling the initControls() method, which will sync all controls

to their current values, used for loading presets!
• respond to GUI_EXTERNAL_SET_NORM_VALUE message by calling the appropriate function on the

custom GUI object; only used for parameter binding in VST3!!
NOTE: for pure custom GUI’s, the messages GUI_DID_OPEN, GUI_WILL_CLOSE, and GUI_-
TIMER_PING are not called.!!!
void* __stdcall CCustomViewsFive::showGUI(void* pInfo)
{
 // --- ALWAYS try base class first in case of future updates
 void* result = CPlugIn::showGUI(pInfo);
 if(result)
 return result; !
 // --- uncloak the info struct
 VSTGUI_VIEW_INFO* info = (VSTGUI_VIEW_INFO*)pInfo;
 if(!info) return NULL; !
 switch(info->message)
 {
 <SNIP SNIP SNIP> !
! !

Advanced GUI Design: Module 7! Custom GUI Design with VSTGUI4!
Copyright © 2016 Will Pirkle

 case GUI_HAS_USER_CUSTOM:
 {
 // --- set this variable to true if you have a custom GUI
 info->bHasUserCustomView = true; // yes, we have one!
 return NULL;
 } !
 // open() sets the new size of the window in info->size
 // return a pointer to the newly created object
 case GUI_USER_CUSTOM_OPEN:
 {
 m_pGUIController = new CCustomVSTGUI;
 if(m_pGUIController)
 {
 m_pGUIController->open(this, info);
 }
 return m_pGUIController;
 }

 // --- call the close() function and delete the controller object
 case GUI_USER_CUSTOM_CLOSE:
 {
 if(m_pGUIController)
 {
 m_pGUIController->close();
 delete m_pGUIController;
 m_pGUIController = NULL;
 }
 // returning NULL = success
 return m_pGUIController;
 } !
 // --- for any All-at-once sync (RAFX or others)
 case GUI_RAFX_SYNC:
 {
 if(m_pGUIController)
 {
 m_pGUIController->initControls();
 }
 return NULL;
 } !
 // --- for sync with VST parameters only,
 // and only for supporting pure Custom GUIs
 case GUI_EXTERNAL_SET_NORM_VALUE:
 {
 if(m_pGUIController)
 {
 m_pGUIController>setGUIControlsWithNormalizedParameter(
 info->parameterTag,
 info->normalizedParameterValue);
 }
 return NULL;
 } !!
 // --- handle paint-specific timer stuff
 case GUI_TIMER_PING:

! !

Advanced GUI Design: Module 7! Custom GUI Design with VSTGUI4!
Copyright © 2016 Will Pirkle

 {
 return NULL;
 }
 } !
 return NULL;
} !
That’s all there is for the plug-in side code. Now it’s time to dig into the GUI Controller object!!!
GUI Controller-Side Code!
The first thing you need to remember is that you will be instantiating all the GUI objects, and because you
need to implement the valueChanged() method, you must cache the pointers to those objects. The val-
ueChanged() method’s only argument is a pointer to the control that changed, so you can match pointers
to figure out what changed. In a larger GUI, I would use an array, vector or other list-type object to hold
the pointers.!!
CCustomVSTGUI.h!
Below is the complete declaration of our derived object. The functions that you need to work with are in
bold along with the member variable pointers to all the VSTGUI objects. !!
#pragma once
#ifndef __CUSTOMVSTGUI_H
#define __CUSTOMVSTGUI_H !
#include "VSTGUIController.h" !
class CCustomVSTGUI : public CVSTGUIController
{
public:
 CCustomVSTGUI(void);
 ~CCustomVSTGUI(void); !
 // --- overrides
 virtual bool open(CPlugIn* pPlugIn, VSTGUI_VIEW_INFO* info); !
 // --- do idle processing; meters
 virtual void idle(); !
 // --- pure abstract base class so we **must** override this
 virtual void valueChanged(VSTGUI::CControl* pControl); !
 // --- must override for parameter sync across various APIs
 // the implementation will depend on your custom GUI code
 // but there are helper functions below to make this as easy as
 // possible
 virtual void setGUIControlsWithNormalizedParameter(int tag,
 double normalizedValue,
 VSTGUI::CControl* pControl = NULL); !
 // --- create controls: common to all APIs
 void createControls(); !
 // --- init controls: varies with API
 void initControls(); !!
! !

Advanced GUI Design: Module 7! Custom GUI Design with VSTGUI4!
Copyright © 2016 Will Pirkle

 // --- knob mode override
 virtual int32_t getKnobMode() const; !
 // --- threadsafe version for GUI updates from plugin
 void checkSendUpdateGUI(int tag, float fValue,
 VSTGUI::CControl* pControl); !
 // --- set RAFX parameter via different APIs
 float setPlugInParameterNormalized(int nTag, float fNormalizedValue,
 VSTGUI::CControl* pControl); !
protected:
 // --- GUI SPECIFIC CONTROLS
 // since this is a simple example, I will declare them
 // individually, but you could also declare as arrays of controls
 CTextLabel* m_pVolLeftLabel;
 CAnimKnob* m_pVolLeftKnob;
 CTextEdit* m_pVolLeftEdit;
 CViewContainer* m_pBoostVC;
 CTextLabel* m_pBoostLabel;
 COnOffButton* m_pBoostButton;
 CVuMeter* m_pLeftMeter;
 COptionMenu* m_pChannelOptionMenu;
};
#endif !
You will notice I have declared two member functions createControls() and initControls() to break the
code into smaller chunks. In addition the initControls() method will be called when the user selects a pre-
set. !!!
CCustomVSTGUI.cpp File!
The rest of the implementation is in the object’s .cpp file. The best way to learn this is probably by exam-
ple, so let’s step through the object one function at a time.!!
Constructor:!
• NULL the object pointers so we don’t accidentally use them!
• create our timer object!!
CCustomVSTGUI::CCustomVSTGUI()
{
 m_pVolLeftLabel = NULL;
 m_pVolLeftKnob = NULL;
 m_pVolLeftEdit = NULL; !
 m_pBoostVC = NULL;
 m_pBoostLabel = NULL;
 m_pBoostButton = NULL;
 m_pLeftMeter = NULL;
 m_pChannelOptionMenu = NULL;
} !
Destructor:!
• nothing to do here!!
CCustomVSTGUI::~CCustomVSTGUI()
{

! !

Advanced GUI Design: Module 7! Custom GUI Design with VSTGUI4!
Copyright © 2016 Will Pirkle

} !
getKnobMode()!
This little function just returns the knob mode constant - here use use the linear knob control.!!
int32_t CCustomVSTGUI::getKnobMode() const
{
 /* choices are: kLinearMode;
 kRelativCircularMode;
 kCircularMode; */ !
 return kLinearMode;
} !
open()!
This is the function that creates the frame object and all the sub-views. We will use the createControls()
function to create all the interior sub-views. The open() method prototype is:!!
virtual bool open(CPlugIn* pPlugIn, VSTGUI_VIEW_INFO* info); !
VSTGUI_VIEW_INFO* info
This structure contains all the necessary information for creating the GUI, including some API-specific
variables. We will discuss these as needed. Importantly, the structure contains the two return variables
from this function - the GUI’s width and height. !!
CPlugIn* pPlugIn
This is our plug-in object; we need to store it to use in almost all of the other methods.!!
The open() function needs to do the following:!
• call the base class function to setup all the API-specific stuff for us; this also stores our plugin pointer!
• set the plug-in instance variable (WinOS only)!
• set the AU Listener mechanism (AU only) - you do not need to modify this code or deal with it at all!
• set the dimensions on the return arguments!
• create the frame object!
• call the open() method on the frame object and pass it the window pointer that was given in the info

structure!
• set the frame’s background color and/or bitmap graphic!
• populate the frame with GUI controls!
• initialize the controls!!
Here are some code chunks that perform these activities:!
• store the pointer to the RackAFX plugin!
• set the plug-in instance variable !
• set the dimensions on the return arguments!!
bool CCustomVSTGUI::open(CPlugIn* pPlugIn, VSTGUI_VIEW_INFO* info)
{
 // --- first call the base class to store the API-specific stuff; it
 // will handle most of these chores for you
 bool bSuccess = CVSTGUIController::open(pPlugIn, info); !
 // critical failure at base class level, should never happen
 if(!bSuccess) return false; !!
! !

Advanced GUI Design: Module 7! Custom GUI Design with VSTGUI4!
Copyright © 2016 Will Pirkle

#ifdef AUPLUGIN
 if(m_AUInstance)
 {
 // --- create the event listener and tell it the name of our Dis
 // patcher function named:
 // EventListenerDispatcher
 verify_noerr(AUEventListenerCreate(EventListenerDispatch, this,
 CFRunLoopGetCurrent(),
 kCFRunLoopDefaultMode, 0.05, 0.05,
 &m_AUEventListener));
 // --- start with first control 0
 AudioUnitEvent auEvent;

 // --- parameter 0
 AudioUnitParameter parameter = {m_AUInstance, 0,
 kAudioUnitScope_Global, 0};

 // --- set param & add it
 auEvent.mArgument.mParameter = parameter;
 auEvent.mEventType = kAudioUnitEvent_ParameterValueChange;

 verify_noerr(AUEventListenerAddEventType(m_AUEventListener, this,
 &auEvent));

 // --- notice the way additional params are added using mParameterID
 for(int i=1; i<m_pPlugIn->getControlCount(); i++)
 {
 auEvent.mArgument.mParameter.mParameterID = i;
 verify_noerr(AUEventListenerAddEventType(m_AUEventListener,
 this, &auEvent));
 }
 }
#endif

 // --- set the return variables (you may want to store them too)
 info->size.width = 600;
 info->size.height = 300; !!
• create the frame object!
• set the frame’s background color; two examples are shown here, the first uses built-in colors and the

second constructs the color from RGBA!!
! // --- create the frame rect: it dictates the size in pixels
 CRect frameSize(0, 0, info->size.width, info->size.height); !
 // --- construct the frame
 frame = new CFrame(frameSize, this); !
 // --- open it
#if defined _WINDOWS || defined WINDOWS || defined _WINDLL
 frame->open(info->window, kHWND); // for WinOS, window = HWND
#else
 // for MacOS, window = NSView* or HIView* (VST2 wrapper only)
 frame->open(info->window, (PlatformType)info->vstPlatformType);
#endif !
 // --- set the frame background color and/or image

! !

Advanced GUI Design: Module 7! Custom GUI Design with VSTGUI4!
Copyright © 2016 Will Pirkle

 //
 // COLORS: use either built-in colors, or construct your own from
 // r,g,b,a
 // --- example with built-in color
 frame->setBackgroundColor(kWhiteCColor); !
 // --- example with r,g,b,a
 // here it is red with semi-transparency,
 // you will see the black (not white) background behind it
 frame->setBackgroundColor(CColor(255, 0, 0, 128)); !!
• create the background graphic; here I am using a tiled graphic that requires the CNinePartTiledBitmap

object, but I show commented code for regular bitmaps. The arguments …0, 0, 0, 0) in the get-
Bitmap() method are the tiling offsets. When set to 0, 0, 0, 0 the graphic will be tiled infinitely in the X
and Y dimensions. See the VSTGUI4 documentation for more information on tiled bitmaps.!!

! /* UNCOMMENT THIS TO SEE THE NORMAL BITMAP, AND COMMENT THE CHUNK BELOW
 CBitmap* pBitmap = getBitmap("greymetal.png");

 // --- always check pointer!
 if(pBitmap)
 {
 // --- set it
 frame->setBackground(pBitmap); !
 // --- and... forget it (VSTGUI uses reference counting)
 pBitmap->forget();
 }*/ !
 // --- now do a tiled version, all coords = 0 gives ordinary, infinite
 // tiling in each dimension
 // I recommend not doing exotic tiling because the rendering is
 // very slow
 //
 // --- example of tiled bitmap
 CBitmap* pTiledBitmap = getBitmap("greymetal.png", 0, 0, 0, 0); !
 // --- always check pointer!
 if(pTiledBitmap)
 {
 // --- set it
 frame->setBackground(pTiledBitmap); !
 // --- forget: VSTGUI uses reference counting
 pTiledBitmap->forget();
 } !!
• populate the frame with GUI controls (we’ll look at the method shortly) !
• initialize the controls!
• set the timer interval and start it!!
 // --- now that the frame has a background, continue with controls
 // I made this a separate function because it is usually very long
 createControls(); !
! !

Advanced GUI Design: Module 7! Custom GUI Design with VSTGUI4!
Copyright © 2016 Will Pirkle

 // --- the main control inits
 initControls(true); // true = setup AU Listener (only once) !
 return true;
} !!
idle()!
This is actually one of the most important functions we need to implement. It is responsible for repainting
the GUI each time the timer fires (and assuming there is something to repaint — if no controls have
changed, they won’t repaint themselves which prevents the screen from flickering). There are separate
code chunks for each API, except VST3 which handles the repainting inherently. The code is simple - in
each case, we are calling setValueNormalized() on the left meter object according to its current value in
the plugin, then calling the invalid() method to repaint the meter. These meter values are thread-safely
accessed with their own member functions, which you do not need to write or alter. The final call is for the
base class to do its updates. The reason that the m_pLeftMeter->invalid() function call is repeated for
each API is that we don’t want to call invalid() unless we know we need it. For VST3 plugins, this function
is not used so we don’t want to blindly call invalid() for that case.!!!
void CCustomVSTGUI::idle()
{
 // --- left meter control Id = 50; getRAFXParameterNormalized() takes the
 // index (tag) so use helper function to get it
 int nTag = getTagForRAFXControlId(50);

 // --- RAFX: get the RAFX parameter to set the meter value
#if !defined AUPLUGIN && !defined AAXPLUGIN && !defined VSTPLUGIN
 m_pLeftMeter->setValueNormalized(getRAFXParameterNormalized(nTag));
 m_pLeftMeter->invalid();
#endif !
 // --- AU: get the AU parameter to set the meter value
#ifdef AUPLUGIN
 m_pLeftMeter->setValueNormalized(getAUParameterActual(nTag));
 m_pLeftMeter->invalid();
#endif

 // --- AAX: get the RAFX parameter to set the meter value
#ifdef AAXPLUGIN
 m_pLeftMeter->setValueNormalized(getAAXParameterNormalized(nTag));
 m_pLeftMeter->invalid();
#endif !
 // --- VST: not needed; this is passed back as a param update from the
 // process function and connected directly to the meter update !
 // --- let base class do its thing
 CVSTGUIController::idle();
} !
createControls()!
In this function, we will create all the GUI objects. You need to have gone through modules 3-6 to under-
stand how these constructors work — they are repeats of the lessons you learned in those modules so I
will not go over every detail; here it is important to focus on how the views are added to the frame or inner
view container objects. So, lets step through the function a piece at a time. In the first part, we just check

! !

Advanced GUI Design: Module 7! Custom GUI Design with VSTGUI4!
Copyright © 2016 Will Pirkle

to make sure we have a valid plug-in buddy to connect to, and call the frame’s onActivate() method if
there is no plug-in. We will call the onActivate() method at the end of initControls() after adding all the
views. !!
void CCustomVSTGUI::createControls()
{
 if(!frame)
 return; !
 if(!m_pPlugIn)
 return frame->onActivate(true); !
Now we can begin instantiating the control objects. Start with the Volume Left text label; create it and add
it to the frame object — note how the rectangle is set using the origin and size parameters we wrote in
our tables previously. This example also has some commented code to let you play with setting styles and
text after creation:!!
 // --- add the text label at origin(0,5) size(75,15)
 /*
 Constructor:
 CTextLabel(const CRect& size,
 UTF8StringPtr txt = 0,
 CBitmap* background = 0,
 const int32_t style = 0)

 As an example, I'll create it first, then set the text rather than us
 ing text in constructor*/ !
 CPoint labelOrigin(0,5);
 CPoint labelSize(75,15);
 CRect labelRect(labelOrigin, labelSize); !
 // --- create
 m_pVolLeftLabel = new CTextLabel(labelRect);

 // --- set extra attributes; see CTextLabel & CParamDisplay; there are
 // MANY attributes you can set on CParamDisplay
 // objects!
 if(m_pVolLeftLabel)
 {
 // --- set font color
 m_pVolLeftLabel->setFontColor(kWhiteCColor); !
 // --- set background transparent
 m_pVolLeftLabel->setTransparency(true); !
 // --- set the text
 m_pVolLeftLabel->setText("Volume (L)"); !
 // --- OPTIONAL set the font - if you don't set it, you get plat
 // form default (Ariel 10)
 //
 // In this example, I will use a default font
 m_pVolLeftLabel->setFont(kNormalFontSmaller); !
 // --- OPTIONAL set the style
 // pLabel->setStyle(pLabel->getStyle() | k3DOut);

! !

Advanced GUI Design: Module 7! Custom GUI Design with VSTGUI4!
Copyright © 2016 Will Pirkle

!
 // --- do any more customization, then add to frame
 frame->addView(m_pVolLeftLabel);
 } !
We continue with the knob object. Notice how the control-tag is set — it is the Control ID in RackAFX but
converted to the controlTag version with the helper function. Notice the use of the helper function get-
Bitmap() to instantiate the bitmap object:!!
! CPoint knobOrigin(16, 22);
 CPoint knobSize(42, 42);
 CRect knobRect(knobOrigin, knobSize); !
 // --- v6.8+ --> the VSTGUI4 Control Tag MUST match the index of the
 // control in our control list
 // for proper parameter synchronization with the VST, AU,
 // AAX or RAFX Host
 //
 // 8 = left Volume ControlId in RackAFX; function returns index of con-
 // trol, sync'd to VST/AU/AAX parameters
 int nTag = getTagForRAFXControlId(8);
 int nPixMaps = 80;
 int nHtOneImage = 42; !
 // --- get the bitmap
 CBitmap* pBitmap = getBitmap("sslblue.png");

 // --- if the bitmap does not exist DO NOT CREATE the control!
 if(pBitmap)
 {
 // --- create it; leave offset at (0,0) - it shifts top,left of
 // control if fine adjustment needed
 m_pVolLeftKnob = new CAnimKnob(knobRect, this, nTag, nPixMaps,
 nHtOneImage, pBitmap);

 // --- add to frame
 frame->addView(m_pVolLeftKnob); !
 // --- forget, VSTGUI uses reference counting
 pBitmap->forget();
 } !
And, now the CTextEdit control, just under the knob — as with the custom view example, there are many
attributes you can set with this control:!!
 // --- add the edit control at origin(15,67) size(45, 15)
 /*
 Preferred Constructor:
 CTextEdit(const CRect& size,
 IControlListener* listener,
 int32_t tag,
 UTF8StringPtr txt = 0,
 CBitmap* background = 0,
 const int32_t style = 0); !
 The styles are the same as a CTextLabel, which CTextEdit is de
 rived from. There are MANY styles that can be set, making the

! !

Advanced GUI Design: Module 7! Custom GUI Design with VSTGUI4!
Copyright © 2016 Will Pirkle

 edit control rounded, with or without frame, etc...
 See docs and experiment!
 */
 CPoint editOrigin(15, 67);
 CPoint editSize(45, 15);
 CRect editRect(editOrigin, editSize); !
 // --- create it: use same nTag variable to link knob/edit
 // "0.00" is initial text
 m_pVolLeftEdit = new CTextEdit(editRect, this, nTag, “0.00"); !
 // --- customize; black background and magenta font color
 if(m_pVolLeftEdit)
 {
 // --- this is an example of using a non built-in font
 //
 // --- first create the font description
 CFontDesc* fontDesc = new CFontDesc("Microsoft Sans Serif", 10); !
 if(fontDesc)
 {
 // --- you can change the style - here is bold
 // be careful here - some styles don't work well in
 // edit control depending on the font size
 // for example if font size is too big, italic text
 // will move around as it changes
 fontDesc->setStyle(fontDesc->getStyle() | kBoldFace);

 // --- this should be named createPlatformFont - it creates
 // the font on different platforms
 fontDesc->getPlatformFont(); !
 // --- set the new font
 m_pVolLeftEdit->setFont(fontDesc);
 } !
 // --- set back and font colors
 m_pVolLeftEdit->setBackColor(kBlackCColor);
 m_pVolLeftEdit->setFontColor(kMagentaCColor); !
 // --- OR you can make the background transparent
 // pEdit->setTransparency(true);

 // --- give it rounded corners with round radius of 5
 //
 // RoundRect is a style
 m_pVolLeftEdit->setStyle(m_pVolLeftEdit->getStyle() |
 kRoundRectStyle); !
 // --- round rect radius is an attribute in pixels
 m_pVolLeftEdit->setRoundRectRadius(5); !
 // --- add to the frame
 frame->addView(m_pVolLeftEdit);
 } !
We have one more GUI object to add to the frame: the inner view container that holds the boost button
and LED meter. Notice the origin is given in frame coordinates, that is the view container is positioned

! !

Advanced GUI Design: Module 7! Custom GUI Design with VSTGUI4!
Copyright © 2016 Will Pirkle

relative to the frame’s origin. It’s creation is just like what we saw in the custom view except here we give
it a background graphic:!!
 // --- EXAMPLE OF CREATING A VIEW CONTAINER
 /*
 A powerful feature of VSTGUI4 is the ability to create a view
 container and add views to it.
 You can then move the whole container around or show/hide it and
 all subviews will also move/show/hide.
 You can have any number of nested containers.

 In this example, we'll create a view container with a switch
 (COnOffButton) drop-list and a LED VU Meter inside it.
 */

 // --- add the edit control at origin(15,67) size(45, 15)
 /*
 Preferred Constructor:
 CViewContainer(const CRect& rect)
 */
 CPoint vcOrigin(80, 0);
 CPoint vcSize(100, 120);
 CRect vcRect(vcOrigin, vcSize); !
 // --- create
 m_pBoostVC = new CViewContainer(vcRect);
 if(m_pBoostVC)
 {
 // --- set background bitmap, color, or use setTransparency for
 // transparent VC
 CBitmap* pBitmap = getBitmap("lightgreymetal.png");

 // --- if the bitmap does not exist DO NOT CREATE the control!
 if(pBitmap)
 {
 // --- this is also how to change a bitmap on the fly
 m_pBoostVC->setBackground(pBitmap); !
 // --- always forget
 pBitmap->forget();
 } !
Notice we have not added the closing curly bracket here — we are still inside the if(m_pBoostVC) state-
ment. It is here that we will add the inner controls. After the controls are added, we will add the populated
view container to the frame. We will start with the Boost label — its origin is relative to the inner view con-
tainer, and we add it to the container, not the frame object:!!
! ! // --- add controls: note that origin() points are relative to
 // VC, not frame
 CPoint labelOrigin(0,5);
 CPoint labelSize(75,15);
 CRect labelRect(labelOrigin, labelSize); !
 // --- create label
 m_pBoostLabel = new CTextLabel(labelRect);

 // --- set extra attributes;

! !

Advanced GUI Design: Module 7! Custom GUI Design with VSTGUI4!
Copyright © 2016 Will Pirkle

 if(m_pBoostLabel)
 {
 // --- set font color
 m_pBoostLabel->setFontColor(kWhiteCColor); !
 // --- set background transparent
 m_pBoostLabel->setTransparency(true); !
 // --- set the text
 m_pBoostLabel->setText("Boost"); !
 // --- do any more customization, then add to VC, not the
 // frame
 m_pBoostVC->addView(m_pBoostLabel);
 } !
Now, we add the on/off button:!!
! // --- add the COnOffButton origin(25,30) size(25, 35)
 /*
 Preferred Constructor:
 COnOffButton(const CRect& size,
 IControlListener* listener = 0,
 int32_t tag = -1,
 CBitmap* background = 0,
 int32_t style = 0);
 */
 CPoint buttonOrigin(25, 30);
 CPoint buttonSize(25, 35);
 CRect buttonRect(buttonOrigin, buttonSize);

 // --- get the proper VSTGUI tag
 int nTag = getTagForRAFXControlId(45); // 45 = RAFX ControlID
 // for BOOST !
 // --- set background bitmap, color, or use setTransparency for
 // transparent VC
 pBitmap = getBitmap("medprophetbutton.png");

 // --- if the bitmap does not exist DO NOT CREATE the control!
 if(pBitmap)
 {
 // --- create button
 m_pBoostButton = new COnOffButton(buttonRect, this, nTag,
 pBitmap);

 if(m_pBoostButton)
 {
 // --- always forget
 pBitmap->forget(); !
 // --- do any customizations then add to VC
 m_pBoostVC->addView(m_pBoostButton);
 }
 } !

! !

Advanced GUI Design: Module 7! Custom GUI Design with VSTGUI4!
Copyright © 2016 Will Pirkle

Next is the option menu (drop-list) which I added here to show how to access the enumerated list from
the RAFX control object. This is one of the few controls that requires extra initialization at construction
time:!!
! ! // --- add the COptionMenu origin(25,30) size(25, 35)
 /*
 Preferred Constructor:
 COptionMenu(const CRect& size,
 IControlListener* listener,
 int32_t tag,
 CBitmap* background = 0,
 CBitmap* bgWhenClick = 0,
 const int32_t style = 0); !
 */
 CPoint optionMenuOrigin(12, 98);
 CPoint optionMenuSize(75, 15);
 CRect optionMenuRect(optionMenuOrigin, optionMenuSize);

 // --- get the proper VSTGUI tag
 // 41 = RAFX ControlID for Channel selector
 nTag = getTagForRAFXControlId(41);

 // --- create button
 m_pChannelOptionMenu = new COptionMenu(optionMenuRect, this,
 nTag);

 // --- no bitmap required, but can be used for custom menu
 if(m_pChannelOptionMenu)
 {
 // --- do any customizations then add to VC
 // let's make the background white and text blue
 m_pChannelOptionMenu->setBackColor(kWhiteCColor);
 m_pChannelOptionMenu->setFontColor(kBlueCColor); !
 // --- populate the option menu with strings from the con-
 // nected CUICtrl object
 // This is one of the VSTGUI4 controls that requires
 // additional initialization
 // CSegmentButton is another one
 // --- get the object with Control ID = to the Option Menu
 // (set in CreateControls() above)
 CUICtrl* pUICtrl = m_pPlugIn->getUICtrlByListIndex(
 m_pChannelOptionMenu->getTag());
 if(pUICtrl)
 {
 // --- clear
 m_pChannelOptionMenu->removeAllEntry();

 // --- check to make sure this is a UINT control
 // (this is an extra step)
 if(pUICtrl->uUserDataType == UINTData)
 {
 // --- iterate through the cEnumeratedList
 // until there is nothing left
 bool bWorking = true;
 int m = 0;
 while(bWorking)

! !

Advanced GUI Design: Module 7! Custom GUI Design with VSTGUI4!
Copyright © 2016 Will Pirkle

 {
 // --- chew off the next string
 stringstream enumString;
 getEnumString(pUICtrl->cEnumeratedList,
 m, enumString); !
 // --- if empty, we are done
 if(enumString.str().size() == 0)
 bWorking = false;
 else
 {
 // --- add this string to the menu
 m_pChannelOptionMenu->addEntry(
 enumString.str().c_str(), m);

 m++;
 }
 }

 // --- make sure there are entries; if the
 // above failed (it should never), then set
 // it to something to avoid a crash
 int n = m_pChannelOptionMenu->getNbEntries();
 if(n <= 0)
 {
 m_pChannelOptionMenu->addEntry("-n/a-");
 m_pChannelOptionMenu->setMax(0);
 m_pChannelOptionMenu->setValue(0);
 }
 }
 } !
 // --- add it
 m_pBoostVC->addView(m_pChannelOptionMenu);
 }!!!
And, we finish with the LED meter control, adding it to the view container, then adding the view container
to the frame:!!
 // --- add the LED VU Meter origin(25,30) size(25, 35)
 /*
 Preferred Constructor:
 CVuMeter(const CRect& size,
 CBitmap* onBitmap,
 CBitmap* offBitmap,
 int32_t nbLed,
 int32_t style = kVertical); !
 The VU Meter object is one of several VSTGUI4 objects that
 requires 2 bitmaps (CSlider is another), in this case we
 need one bitmap for the ON state and another for the OFF
 state. You also need to know the number of LEDs in the me
 ter. !
 Our built-in LED bitmaps are only for vertical orientation,
 but it is easy to generate graphics for horizontal meters.
 Note the style constant.

! !

Advanced GUI Design: Module 7! Custom GUI Design with VSTGUI4!
Copyright © 2016 Will Pirkle

!
 NOTE: VU meters must be manually updated in the idle()
 function to animate them!
 */
 CPoint meterOrigin(70, 10);
 CPoint meterSize(17, 86);
 CRect meterRect(meterOrigin, meterSize);
 nTag = getTagForRAFXControlId(50); // 50 = Meter 1

 // --- set background bitmap, color, or use setTransparency for
 // transparent VC
 CBitmap* onBitmap = getBitmap("vuledon.png");
 CBitmap* offBitmap = getBitmap("vuledoff.png"); !
 if(onBitmap && offBitmap)
 {

 // --- create: 20 is the number of LED segments
 m_pLeftMeter = new CVuMeter(meterRect, onBitmap, offBitmap,
 20, kVertical);
 if(m_pLeftMeter)
 {
 // --- set the tag; note that this is not really
 // needed since
 // we need to update meters manually in idle(),
 // but if you have multiple meters, you may want
 // to index them for your own bookkeeping
 m_pLeftMeter->setTag(nTag); !
 // --- forget
 onBitmap->forget();
 offBitmap->forget();

 // --- do any customizations then add to VC
 m_pBoostVC->addView(m_pLeftMeter);
 }
 } !
 // --- add VC to the frame
 frame->addView(m_pBoostVC);
 } !
 // --- activate
 frame->onActivate(true);
} !
Now that the controls are instantiated, we need to initialize them using the values in our API’s particular
parameter container. This is only needed for RackAFX and AU; the others are self-synchronizing.!!
void CCustomVSTGUI::initControls()
{
 if(!frame)
 return; !
 // --- Synchronization to plugin parameters, API dependent
 //
 int nParams = m_pPlugIn->getControlCount();
 for(int i=0; i<nParams; i++)

! !

Advanced GUI Design: Module 7! Custom GUI Design with VSTGUI4!
Copyright © 2016 Will Pirkle

 {
 #ifdef AUPLUGIN
 // --- For AU plugins, we sync to the ACTUAL parameters stored in
 // our Globals
 setGUIControlsWithActualParameter(i, getAUParameterActual(i));
 #endif

 #if !defined AUPLUGIN && !defined AAXPLUGIN && !defined VSTPLUGIN
 // --- For RAFX plugins, we sync to the NORMALIZED parameters
 // stored in our Globals
 setGUIControlsWithNormalizedParameter(i,
 getRAFXParameterNormalized(i));
 #endif
 } !
 // --- For VST and AAX plugins there is *nothing to do* -- the params
 // are initialized automatically after the GUI is shown
 // via the setParameterNormalized() function below, this is part
 // of the API for each !
 // --- force the whole GUI to repaint
 frame->invalid();
} !
setGUIControlsWithNormalizedParameter()!
This control will be called for one of two reasons:!
(1) externally called to sync our GUI with the VST client GUI (Ableton allows you to see both at once),

pControl will be NULL!
(2) internally called to sync all controls with the same tag to the same value for RAFX only, here pControl

will NOT be NULL and can be used to check if the control really needs updating (an infinite loop won't
happen, but I like to play it safer here)!!

You will need to modify this code for each of your control objects that can be updated (for example, static
text does not need updating). The operation is simple here - use the incoming tag and pControl values to
figure out which of your control object needs to be set, then call setValueNormalized() for non-text based
controls, or updateTextControl() for text-based controls (edit boxes or static text that you wish to change
dynamically). Notice the way the inputs are used to find the correct control:!!
void CCustomVSTGUI::setGUIControlsWithNormalizedParameter(int tag,
 double normalizedValue,
 VSTGUI::CControl* pControl)
{
 if(m_pVolLeftKnob && m_pVolLeftKnob != pControl
 && m_pVolLeftKnob->getTag() == tag)
 {
 m_pVolLeftKnob->setValueNormalized(normalizedValue);
 m_pVolLeftKnob->invalid();
 } !
 if(m_pChannelOptionMenu && m_pChannelOptionMenu != pControl
 && m_pChannelOptionMenu->getTag() == tag)
 {
 m_pChannelOptionMenu->setValueNormalized(normalizedValue);
 m_pChannelOptionMenu->invalid();
 } !
 if(m_pBoostButton && m_pBoostButton != pControl

! !

Advanced GUI Design: Module 7! Custom GUI Design with VSTGUI4!
Copyright © 2016 Will Pirkle

 && m_pBoostButton->getTag() == tag)
 {
 m_pBoostButton->setValueNormalized(normalizedValue);
 m_pBoostButton->invalid();
 } !
 if(m_pVolLeftEdit && m_pVolLeftEdit != pControl
 && m_pVolLeftEdit->getTag() == tag)
 {
 updateTextControl(m_pVolLeftEdit, tag, normalizedValue);
 m_pVolLeftEdit->invalid();
 } !
 if(m_pLeftMeter && m_pLeftMeter->getTag() == tag)
 {
 m_pLeftMeter->setValueNormalized(normalizedValue);
 m_pLeftMeter->invalid();
 }
} !
valueChanged()!
This is the last real function we need to cover (the remaining two helper functions are fairly self explanato-
ry). This function is called when the user changes a control. The argument is the CControl* of the object
that was altered. In this function we will need to:!!
• get the RAFX CUICtrl pointer with the control’s tag variable!
• get the normalized value from the control; this is done differently for text-based controls so we first do a

test to see if the control is text-based then use the appropriate built-in function!
• use the built-in function setPlugInParameterNormalized() to handle the thread-safe accesses to the

underlying API’s parameters; for VST, AU and AAX, this will also sync all controls that share the same
tag!

• call the built-in checkSendUpdateGUI() function to handle user updates; there is nothing for you to al-
ter in that function!

• for RAFX, broadcast this control change to all controls with the same tag via setGUIControlsWithNor-
malizedParameter() which we implemented above!!!!

void CCustomVSTGUI::valueChanged(VSTGUI::CControl* pControl)
{
 if(!m_pPlugIn) return; !
 // --- get the RAFX ID for this control
 int32_t nTag = pControl->getTag(); !
 // --- get the control for re-broadcast of some types
 CUICtrl* pUICtrl = m_pPlugIn->getUICtrlByListIndex(nTag);
 if(!pUICtrl) return; !
 // --- Normalized control value
 float fNormalizedValue = 0.0; !
 // --- edit controls are handled differently than all others since they
 // are text based
 //
 // Use dynamic casting to see if this is an edit control
 CTextEdit* control = dynamic_cast<CTextEdit*>(pControl);

! !

Advanced GUI Design: Module 7! Custom GUI Design with VSTGUI4!
Copyright © 2016 Will Pirkle

 if(control)
 fNormalizedValue = parseAndUpdateTextControl(
 (CTextEdit*)pControl, pUICtrl);
 else
 fNormalizedValue = pControl->getValueNormalized(); !
 // --- RAFX, VST, AU, AAX done here; NOTE: for VST, AU, AAX this will
 // update all controls with same tag
 float fWouldBeValue = setPlugInParameterNormalized(nTag,
 fNormalizedValue, pControl);

 // --- check update GUI RAFX, VST, AU, AAX
 checkSendUpdateGUI(nTag, fWouldBeValue, pControl); !
 // --- RAFX: broadcast the new value to all controls with same tag
#if !defined AUPLUGIN && !defined AAXPLUGIN && !defined VSTPLUGIN
 if(!m_pVSTParameterConnector)
 setGUIControlsWithNormalizedParameter(nTag, fNormalizedValue,
 pControl);
#endif !
} !
Whew! That’s it — we’re done! The final functions getBitmap() and getNormalizedValue() in the .cpp file
and the other miscellaneous helper functions in the .h file are self-explanatory and you can peruse them
at your own pace. !!
Compile and Test!
Now, compile and test the plug-in. First, make sure the sendUpdateGUI() code is working by using the
Update GUI button on the RackAFX UI. Next, you are going to notice that the LED meter object does not
behave like the RackAFX meter objects (either on the main view, or in the RackAFX custom GUIs). It
seems to be glitchy and does not move smoothly. This is because the RackAFX meters are customized
versions. They include a CEnvelopeDetector object inside them which allows you to control how the LED
meter tracks the signal as linear/log as well as letting you set the attack and release times. The stock
CVuMeter only displays the passing value and has no ballistics to it. So, it looks glitchy. If you want a
simple challenge, subclass the CVuMeter object to include an envelope detector.!!!!
References:!!
VSTGUI4 Files and Documentation: http://sourceforge.net/projects/vstgui/

! !

http://sourceforge.net/projects/vstgui/

