
RAFX Technical Note 5! Implementing a MIDI Learn Custom GUI!
Copyright © 2017 Will Pirkle

!
A Custom GUI for MIDI Learn Functions!
Will Pirkle!!
A user requested information about making a GUI with MIDI Learn controls. This is an especially good
candidate for using the Advanced GUI API features in RackAFX. RackAFX (like AU, AAX and VST) only
updates internal variables in your plugin when the audio is streaming through it. This is part of a thread-
safety mechanism present in all four APIs. However, with MIDI Learn, the user will be interacting with the
GUI when audio may or may not be streaming. So, we need a mechanism to handle these interactions as
well as update the GUI as the user requested:!!
• user turns on the MIDI Learn button!
• user presses a key on the connected MIDI keyboard (or built-in RackAFX Piano Control)!
• the MIDI Learn Button toggles states and turns off!
• the MIDI Note number is stored, and then displayed in a text label for the user to see!!
This is actually a fairly simple and straightforward use of the Advanced GUI API. And, of course it will also
port out to your VST, AU and AAX plugins as well. You could also display information about the control’s
value, if using CC’s rather than note events.!!
Controls !
In order to implement this GUI, we will need to create custom controls for two VSTGUI4 objects:!!
• COnOffButton: this is the MIDI Learn Button!
• CTextLabel: this is the MIDI note “blurb” that we display for the user!!
In RackAFX, we create a new project and then assign two GUI controls on the main interface. One con-
trol is a 2-state switch labeled “LEARN” and the other control is a knob that transmits/receives an integer
value (this knob is optional and we won’t really be using it for anything other than to create a storage vari-
able for the MIDI Note Number of the learned control). The control setups look like this:!!
MIDI Learn Button (first in the left column of 2-state switches)!

! !

RAFX Technical Note 5! Implementing a MIDI Learn Custom GUI!
Copyright © 2017 Will Pirkle

MIDI Note Knob !

The connected variables show up in the .h file:!!
! // ADDED BY RACKAFX -- DO NOT EDIT THIS CODE!!! ----------------------------------- //!
! // **--0x07FD--**!!
! int m_nMIDINote;!
! UINT m_uMIDILearn;!
! enum{SWITCH_OFF,SWITCH_ON};!!
! // **--0x1A7F--**!
! // --- //!!!!

! !

RAFX Technical Note 5! Implementing a MIDI Learn Custom GUI!
Copyright © 2017 Will Pirkle

RackAFX GUI!
In the GUI Designer, we need to add an on-off button (here I use the Medium Prophet button graphic) and
some text labels to display information. We will need to fill-in or alter the CustomView attribute for the two
controls of interest: the MIDI Learn Button and the text label to display the note information. For the but-
ton, I named the CustomView “MIDILearnButton” and for the text label, the CustomView is changed to
“MIDINoteLabel.” !!
First the button; note that the control is linked to the LEARN control:!!!!!!!!!!!!!!!!!!!!!!!!
Next is the text label, which I’ve initialized to “N/A”; note that the control is linked to the MIDI Note control:!!!!!!!!!!!!!!!!!!!!!!
! !

RAFX Technical Note 5! Implementing a MIDI Learn Custom GUI!
Copyright © 2017 Will Pirkle

Plugin-Side Code !
So, setting up the CustomView attributes is very easy. Now, we need to create the custom view controls
from within the plugin and save (cache) the pointers to these controls. You should already be familiar with
the Advanced GUI API tutorials in Modules 2 - 4 which demonstrate how to setup the project for this kind
of operation. After installing the VSTGUI4.3 library and adding the ViewAttributes files to your project (this
is covered in the tutorials), we need to un-comment the #includes at the top:!!
#include "GUIViewAttributes.h"!
#include "../vstgui4/vstgui/vstgui.h"!!
and then add our own pointer variables in the user-variable section, one for each custom control. Note
also the addition of the GUI Helper object that will greatly simplify decoding information from the host
about the control we are creating.!!
! // Add your code here: --- //!
! // --- helper for custom view stuff!
! CVSTGUIHelper m_GUIHelper;!!
! // --- the MIDI Learn Button!
! COnOffButton* m_pMIDILearnButton;!!
! // --- MIDI Text blurb!
! CTextLabel* m_pMIDIBlurb;!!!
! // END OF USER CODE -- //!!
In the .cpp file, we initialize the pointers to NULL in the constructor:!!
! // --- custom view stuff!
! m_pMIDILearnButton = NULL;!
! m_pMIDIBlurb = NULL;!!
In our showGUI() function, we need to un-comment the customization code and add our own stuff to it.
First, for the GUI_CUSTOMVIEW message, we decode the customViewName string and then create the
needed controls (see the tutorials for much more information on this). We create and store the pointers for
the two controls, based on their CustomView attributes, then return the pointers cloaked as NULL. Notice
the customization of the text label (transparency, and text alignment):!!
case GUI_CUSTOMVIEW:!
{!
! if(strcmp(info->customViewName, "MIDILearnButton") == 0)!
! {!
! ! // --- get the needed attributes with the helper!
! ! const CRect rect = m_GUIHelper.getRectWithVSTGUIRECT(info->customViewRect);!
! ! const CPoint offsetPt = m_GUIHelper.getPointWithVSTGUIPOINT(!
! ! ! ! ! ! ! ! ! info->customViewOffset);!
! ! CBitmap* pBitmap = m_GUIHelper.loadBitmap(info);!!
! ! // --- create COnOffButton and cache pointer!
! ! // For more info, see the class definition for COnOffButton and the VSTGUI4 docs!
! ! m_pMIDILearnButton = new COnOffButton(rect, (IControlListener*)info->listener,!
! ! ! ! ! ! ! ! info->customViewTag, pBitmap); !

! !

RAFX Technical Note 5! Implementing a MIDI Learn Custom GUI!
Copyright © 2017 Will Pirkle

! ! // --- decrement ref count!
! ! if(pBitmap)!
! ! ! pBitmap->forget();!!
! ! // --- return control cloaked as a void*!
! ! return (void*)m_pMIDILearnButton;!
! }!
! if(strcmp(info->customViewName, "MIDINoteLabel") == 0)!
! {!
! ! // --- get the needed attributes with the helper!
! ! const CRect rect = m_GUIHelper.getRectWithVSTGUIRECT(info->customViewRect);!!
! ! // --- create CTextLabel and chache pointer!
! ! // For more info, see the class definition for CTextLabel and the VSTGUI4 docs!
! ! m_pMIDIBlurb = new CTextLabel(rect); !!
! ! // --- make background transparent (can play with this for your own customization)!
! ! m_pMIDIBlurb->setTransparency(true);!!
! ! // --- align text to left!
! ! m_pMIDIBlurb->setHoriAlign(kLeftText);!!
! ! // --- return control cloaked as a void*!
! ! return (void*)m_pMIDIBlurb;!
! }!
! return NULL;!
}!!
Next, for the GUI_DID_OPEN message, we initialize the values of these controls:!!
case GUI_DID_OPEN:!
{!
! // --- initialize any cached controls!
! if(m_pMIDILearnButton)!
! {!
! ! // --- turn off button!
! ! m_pMIDILearnButton->setValue(0.0);!
! }!
! if(m_pMIDIBlurb)!
! {!
! ! // --- set text to Not Available!
! ! m_pMIDIBlurb->setText("N/A");!
! }!!
! return NULL;!
}!!!

! !

RAFX Technical Note 5! Implementing a MIDI Learn Custom GUI!
Copyright © 2017 Will Pirkle

And, in the GUI_WILL_CLOSE message handler, we just NULL the variables (they are self-deleting so
we don’t need to destroy them - see the tutorials for more information):!!
case GUI_WILL_CLOSE:!
{!
! if(m_pMIDILearnButton)!
! ! // --- reset to NULL!
! ! m_pMIDILearnButton = NULL;!!
! if(m_pMIDIBlurb)!
! ! // --- reset to NULL!
! ! m_pMIDIBlurb = NULL;!!
! return NULL; // all OK!
}!!
The only thing left to do is modify the midiNoteOn() method in the plugin to pick up the learned note
number and manipulate the GUI. This is straightforward if you have worked through the first few tutorials.
We also use the built-in helper function uintToString() to convert the MIDI note number into a char* for
use in the GUI - it is important to delete this pointer when done as shown:!!
// --- handle note on for learning!
bool __stdcall CMIDILearn::midiNoteOn(UINT uChannel, UINT uMIDINote, UINT uVelocity)!
{!
! // --- if GUI is visible, manipulate it!
! if(m_pMIDILearnButton)!
! {!
! ! // --- is Learn Button on?!
! ! if(m_pMIDILearnButton->getValue() == 1.0)!
! ! {!
! ! ! // --- clear the variable in case this happens while audio is flowing!
! ! ! m_uMIDILearn = SWITCH_OFF;!!
! ! ! // --- clear the switch on the GUI!
! ! ! m_pMIDILearnButton->setValue(0.0);!!
! ! ! // --- save the note number!
! ! ! m_nMIDINote = uMIDINote;!!
! ! ! // --- show it in text; use helper to convert UNIT to string!
! ! ! char* pNote = uintToString(uMIDINote);!!
! ! ! // --- change the text blurb!
! ! ! if(m_pMIDIBlurb)!
! ! ! ! m_pMIDIBlurb->setText(pNote);!!
! ! ! // --- free memory!
! ! ! delete [] pNote;!
! ! }!
! }!
! return true;!
}!!
! !

RAFX Technical Note 5! Implementing a MIDI Learn Custom GUI!
Copyright © 2017 Will Pirkle

Build and Test !
Thats it! Now we just build and test the plugin; the custom GUI is used for the MIDI learn operation and
works as the user prescribed. The screen shot here shows the GUI after the C above middle-C has been
pressed, with the MIDI Learn switch turned on - the switch has been turned off programmatically, and the
MIDI Note number has been set in the GUI text label:!

Finally, notice that the GUI does not contain the Knob control we setup earlier, though it does use the con-
trol’s variable to store the MIDI note number. You might optionally get rid of this control, and simply de-
clare your own variable to store the data. !!!!!!!!!!

! !

RAFX Technical Note 5! Implementing a MIDI Learn Custom GUI!
Copyright © 2017 Will Pirkle

!

! !

