
ASPiK Sample Project Using XY Pads and VU Meter Objects in ASPiK
 Copyright © 2021 Will Pirkle

Using XY Pads and VU Meter Objects in ASPiK
Will Pirkle

This brief documents the sample project XYPadsMeters. This simple plugin shows how to use the XY
pad and the solid/segmented or analog VU Meters. The final GUI is shown here:

Figure 1: the plugin GUI controls and meters

The XY Pad has the Left Gain knob mapped to the X-dimension and the Right Gain knob mapped to the
Y-dimension. This document explains how to use each of these controls in the ASPiK GUI Designer. You
should already know how to create the plugin and implement the left and right volume (gain) controls, and
how to add and connect VU meters to your ASPiK plugin core. You should also know the basics of using
the GUI Designer (see tutorial videos at https://ASPiK.com/support/ASPiK7-video-tutorials/). This
document is only concerned with the GUI controls and explains how you set them up as they are
customized versions of VSTGUI4 controls.

Custom Graphics
The two knob controls use the maschine.png file that accompanies this project, however it is also
available for you as an added bonus control in your ASPiK or ASPiK project in the /Resources/knobs
folder. The solid VU meters use the vuoff.png and vuon.png files, while the analog meter uses the
medanalogvumeter.png file.

Importing Graphics
Once you have two knob and to meter controls defined in your plugin project, build your plugin and load it,
open the GUI, and then go to the VSTGUI4 GUI Designer by <shift> Right clicking on the GUI. On the
lower right, select the Bitmaps tab, click the (+) button, and browse to the /Resources/knobs folder and
select the maschine.png file, then add more graphics by going to /Resources/meters and grabbing the
vuon.png and vuoff.png files. Finally, use the analog vu meter pack that accompanies this document
and import the medanalogvumeter.png file. Figure 2 shows how your Bitmaps panel should look after
importing these files.

ASPiK Sample Project Using XY Pads and VU Meter Objects in ASPiK
 Copyright © 2021 Will Pirkle

Figure 2: the Bitmaps tab in the VSTGUI4 GUI Designer with the necessary files already imported with
the (+) button

CAnimKnobs
There are two CAnimKnobs in the GUI that you need to create and connect. These both use the
maschine.png graphics file.

Place the Controls & Set Attributes
Drag and drop the knob controls and set their attributes as shown in Figure 3 (if this is new, you should
watch the video tutorials in the introduction above).

Figure 3: the attributes for the first CAnimKnob control; the red arrows show the values that need to be
set for proper operation

ASPiK Sample Project Using XY Pads and VU Meter Objects in ASPiK
 Copyright © 2021 Will Pirkle

XY-Pad
The CXYPad object implements the stock VSTGUI4 control. I have subclassed this control as CXYPadEx
that allows for easier customization and operation without a VSTGUI4 sub-controller. While the sub-
controller is a powerful paradigm in VSTGUI4, it adds some complexity to the normal XY Pad operation
and my control gets around that using a simple encoding scheme in the VSTGUI4 custom view name
string.

GUI Designer:
In the GUI Designer drag a XY-Pad control onto the Designer pane. Set the attributes as shown in Figure
4. Notice the way the X and Y control values are encoded into the custom view name. This is
documented in the ASPiK documentation: http://aspikplugins.com/sdkdocs/html/gui_designer11_d.html

Figure 4: XY Pad setup; note the encoding of the X and Y control ID values in the Custom View name;
also, the font-color is actually the control-puck color

The custom view name will be decoded and the custom object will be created in the
PluginGUI::createView() function; you can look at that code to see how the custom view string is parsed
and the X/Y control IDs are extracted, as well as how the object is instantiated.

ASPiK Sample Project Using XY Pads and VU Meter Objects in ASPiK
 Copyright © 2021 Will Pirkle

Solid/Segmented VU Meter
The VSTGUI4 CVuMeter object uses two PNG files: one for the meter in a fully OFF state and the other
for the meter in the fully ON state. The ASPiK meter graphics are designed to work with a built-in
extended object called CVuMeterEx that is available in all ASPiK and ASPiK projects in the files
customviews.h and customviews.cpp. This object is subclassed from CVuMeter with one big difference:
my version includes the ability to use PNG strip-animation files just like the knobs use IN ADDITION to
the normal on/off pair of graphic files that allows you to implement an analog view meter with needle and
background. You can also use any other strip animation from KnobMan as a VU meter. You supply two
graphics that you set in the GUI Designer. You also set the graphics size as X,Y in pixels, and the
"number of LEDs." For solid meters, the number of LEDs is the number of Y-pixels for vertical, and X-
pixels for horizontal meters respectively. For segmented meters, this refers to the number of discrete
LEDs that light as the meter moves.

Adding the Meters
In the GUI designer, drag a VU Meter object into the designer pane. Choose your ON and OFF meter
graphics from the drop-lists. Be careful to set the ON graphic to the ON file and vice versa for OFF. Select
the control tag of the meter to connect it. Figure 5 shows how the VU meter setup panel will look for one
of the controls.

Figure 5: the VU Meter setup panel and the attributes that need to be set (red arrows)

Notice that the Custom View name is set to MeterView which is the specific name for the normal LED
meter. If you setup your meter in the ASPiK prototyping panel as inverted, then the custom view will
change to InvertedMeterView. This will happen automatically for you when you select a new control ID
value.

Analog VU Meter
Analog meters use the strip animation just like the CAnimKnob control for the graphics. However, there
are several more parameters that must be set for this control to work properly.

Adding the Meters

ASPiK Sample Project Using XY Pads and VU Meter Objects in ASPiK
 Copyright © 2021 Will Pirkle

In the ASPiK GUI Designer, drag another VU Meter into the Designer pane. Assign the
medanalogvumeter.png file as the bitmap.

Figure 6: the VU meter setup need some additional parameters; the num-led attribute is the number of
images in the strip animation, while the custom view encodes the height of one image, and the zero dB
frame

num-led: the number of frames that you set in KnobMan, or the number of individual images that makeup
the strip animation.

Size: as with the normal VU meters, or the CAnimKnob this parameter sets the dimensions of a single
frame or sub-image. For the meters in this pack the values are:

biganalogvumeter.png 177 x 94
analogvumeter.png 147 x 78
medanalogvumeter.png 122 x 65
smallanalogvumeter.png 60 x 32

Enter the size as X,Y or 122,65 for the medanalogvumeter.png file.

Notice that the second parameter (94 in this case) is the height of just one image in the
strip.

0dB Frame: this is specific to the custom control. The analog VU meter images show the VU needle in
various locations from minimum to maximum values. The PNG files included here have a 0dB marking,
and then a section of RED that is above it. This is a sort of calibrated meter that shows the *nominal*
level as 0dBVU, and values above that as +dBVU in the RED zone on the meter background. With these
meters, the nominal value is around -9dBFS.

For all of the analog meters in this pack, the 0dB frame is number 52 (the top image is number 0, the next
image down is number 1, etc...).

ASPiK Sample Project Using XY Pads and VU Meter Objects in ASPiK
 Copyright © 2021 Will Pirkle

The 0dB frame is only important for inverted analog meters, as you might find on an analog
compressor/limiter -- when the needle is at 0dBVU, there is no gain reduction, and as the device
compresses, the needle moves backwards from the 0dBVU point. This value sets that point.

In addition, the strip animation includes a small LED in the upper right corner that will light when you go
above the 0dB point. The further above 0dBVU, the brighter the LED becomes (on the small meter, it is
very difficult to see as it is so tiny).

CUSTOM VIEW NAME: Normal Analog Meters
For this control, you need to supply a custom view name, that will be the same for all similar meters
(based on size). ASPiK will do this for you, Here is the encoding information:

The custom view name also encodes the height of one image and the 0dB frame because these
parameters are not natively available in the VSTGUI4 base class CVuMeter. Encoding these values is
similar to the XY-Pad's X and Y tag encoding. The form of the custom view name is:

AnalogViewMeter_Haa_Zbb where aa is the height of one image in pixels, and bb is the
zero dB frame number. For the BIG analog meter graphic, the Custom View name would be:

 AnalogViewMeter_H94_Z52

CUSTOM VIEW NAME: Inverted Analog Meters
For inverted meters, the only difference is in the custom view name. For the inverted meters, you use
InvertedAnalogViewMeter_Haa_Zbb so for the same meter above you would use

 InvertedAnalogMeter_H94_Z52

Audio Processing Code
The audio processing code is simple and shown below. Note that the calculation from dB to a raw
multiplier should be moved to the preProcessAudioBuffers function to reduce CPU usage, but I am
leaving it here for simplicity of coding. Connecting the meters is a simple task: just write the audio sample
value into the meter variable directly. The C++ object will handle rectifying and detecting the value.

bool PluginCore::processAudioFrame(ProcessFrameInfo& processFrameInfo)
{
 // --- fire any MIDI events for this sample interval
 processFrameInfo.midiEventQueue->fireMidiEvents(processFrameInfo.currentFrame);

 // --- do per-frame updates; VST automation and parameter smoothing
 doSampleAccurateParameterUpdates();

 // --- convert gain values ~NOTE~ this should be done once per buffer

// for better CPU usage; this is the simplest example
 double gainLeft = pow(10.0, gainLeft_dB / 20.0);
 double gainRight = pow(10.0, gainRight_dB / 20.0);

 // --- process left channel
 double outLeft = processFrameInfo.audioInputFrame[0] * gainLeft;

 double outRight = processFrameInfo.numAudioInChannels > 1 ?
 processFrameInfo.audioInputFrame[1] * gainRight :
 outLeft;

ASPiK Sample Project Using XY Pads and VU Meter Objects in ASPiK
 Copyright © 2021 Will Pirkle

 // --- meters watch the output value; just write them out
 // the meter's envelope detector will supply the ballistics
 leftMeterValue = outLeft;
 rightMeterValue = outRight;

 // --- FX Plugin:
 if(processFrameInfo.channelIOConfig.inputChannelFormat == kCFMono &&
 processFrameInfo.channelIOConfig.outputChannelFormat == kCFMono)
 {
 // --- out left
 processFrameInfo.audioOutputFrame[0] = outLeft;

 return true; /// processed
 }

 // --- Mono-In/Stereo-Out
 else if(processFrameInfo.channelIOConfig.inputChannelFormat == kCFMono &&
 processFrameInfo.channelIOConfig.outputChannelFormat == kCFStereo)
 {
 // --- repeat left output
 processFrameInfo.audioOutputFrame[0] = outLeft;
 processFrameInfo.audioOutputFrame[1] = outLeft;

 return true; /// processed
 }

 // --- Stereo-In/Stereo-Out
 else if(processFrameInfo.channelIOConfig.inputChannelFormat == kCFStereo &&
 processFrameInfo.channelIOConfig.outputChannelFormat == kCFStereo)
 {
 // --- output stereo values
 processFrameInfo.audioOutputFrame[0] = outLeft;
 processFrameInfo.audioOutputFrame[1] = outRight;

 return true; /// processed
 }

 return false; /// NOT processed
}

Compile and Test
Add the second analog and LED meters and rebuild the code. You should get the same GUI as in Figure
1.

References:

ASPiK Documentation: : http://aspikplugins.com/sdkdocs/html/index.html

